Finden Sie schnell wärmepumpe funktionsprinzip für Ihr Unternehmen: 369 Ergebnisse

Wärmepumpe Split R32 - 6kW

Wärmepumpe Split R32 - 6kW

Wärmepumpe Split R32 - 6kW - HIGH PERFORMANCE Vorlauftemperatur 60°C - Flüstermodus 42 dB(A) bei 2,1m - Kühlmittel R32 - Förderfähig - Integrierte elektrische Heizung 3kW - Automatische Messung der Leistungserzeugung (C.O.P) - Touchscreen-Bedienfeld und Steuerung per App - 5 Jahre Garantie Inkl. Zubehör: - Temperaturfühler - Datenleitung zwischen Außeneinheit & Inneneinheit - Heizstab - Wlanmodul - Sicherheitsgruppe - Wandhalterung Inneneinheit
Funktionelle Inhaltstoffe für pharmazeutische Produkte

Funktionelle Inhaltstoffe für pharmazeutische Produkte

Weitere Produkte auf Anfrage Coenzym Q 10 Grüntee-Extrakt Inosit NF 12 Hyaluronsäure, Natriumhyaluronat Aloe Vera Gel D-Glucosamin-Sulfat 2 KCL Chondroitin (Rind/Hai) Cholinbitatrat
Zuverlässige Pumpe bei hohem Druck.

Zuverlässige Pumpe bei hohem Druck.

Die KRAL Schraubenspindelpumpe der Baureihe CL ist eine Hochdruckpumpe mit einer längeren Hauptspindel als die Schraubenspindelpumpe CK. Zudem kann sie mit unterschiedlichen Wellendichtungen und externen Kugellager ausgestattet werden. Die KRAL Baureihe CL wird gern als horizontale oder vertikale Fußpumpe oder Flanschpumpe sowie als vertikale Behälterpumpe eingesetzt. KRAL Schraubenspindelpumpen der Baureihe CL werden auch als Einschubpumpen für die KRAL Schraubenspindelpumpen der Baureihe CG verwendet (siehe unten).
HYGHSPIN Hopper – 3-in-1-Technologie: zuführen, fördern, reinigen mit nur einer Pumpe

HYGHSPIN Hopper – 3-in-1-Technologie: zuführen, fördern, reinigen mit nur einer Pumpe

HYGHSPIN HOPPER im Detail: Ihre Vorteile auf einen Klick Selbstzuführende Ausführung Durch verlängerte Förderschrauben mit Extruderfunktion und einem vergrößerten Eintritt Besonders schonend zu empfindlichen Feststoffen Das Produkt fällt durch Schwerkraft in die Förderkammern Besonders geeignet für siedende Medien Minimierte Eintrittsverluste sichern einen maximalen Schutz gegen Kavitation Hinzu kommen die Vorteile aller HYGHSPIN Schraubenspindelpumpen Erhebliche Kostenersparnis Verminderte Investitions- und Wartungskosten Beste Qualität Herstellung vollständig aus Edelstahl Außergewöhnliche Servicefreundlichkeit Die Pumpe muss für Wartungsarbeiten nicht aus der Anlage entnommen werden Höchste Flexibilität Verschiedenste Produkte, Viskositäten und Mengen sind mit nur einer Pumpe förderbar Produktschonende und gleichmäßige Förderung Geringe Geschwindigkeit, minimale Pulsation, keine Druckstöße Höchstes Hygieneniveau Keine Toträume und besonders gute Umspülung der Wellendichtung CIP und SIP: Reinigung und Sterilisierung innerhalb der Anlage, Einsatz als CIP-Förderpumpe Technische Daten / Leistungsmerkmale HYGHSPIN 70H HYGHSPIN 90H HYGHSPIN 125H Max. Förderleistung 10 m³/h 25 m³/h 70 m³/h Max. Förderdruck 20 bar 25 bar 25 bar Max. ø Feststoff 20 mm 30 mm 45 mm Saugleistung NPSHr  > 0,5 m, Saughöhen bis zu 9 m möglich Viskosität 0,5–1.000.000 mPa s, höhere Werte nach Rücksprache Fördertemperatur –10 bis 180 °C, höhere Werte auf Anfrage Reinigung voll CIP-reinigbar in der Anlage Sterilisation SIP in der Anlage mit Dampf oder Heißwasser Produktberührte Teile 1.4404, 1.4539 oder 1.4462 als Option, andere Werkstoffe auf Anfrage Elastomere HNBR, FPM, EPDM, FFPM, FDA-Zulassung, andere Elastomere auf Anfrage Wellendichtungen einfach- und doppeltwirkende Gleitringdichtungen, mit Messerschneide für klebrige Medien zur Vermeidung von Anfahrschäden, einfachwirkende trockenlaufsichere Lippendichtung Pumpenausrichtung horizontal, vertikal oder seitlich, INLINE Ausführungen möglich Anschlüsse verschiedene Größen und Anschlussnormen nach Abstimmung Bauformen kompakte robuste Blockbauweise für alle Baugrößen, mit freiem Wellenende für die Baugrößen 70, 90, 105 und 125 Antriebe Drehstrom-, Getriebe- oder Servomotoren (hygienische Antriebe in Edelstahlausführung als Option)
BAUTEILANALYSE

BAUTEILANALYSE

Die Bauteilanalyse mittels FEM-Berechnung ist bei der Bestimmung des mechanischen Verhaltens in der Produktentwicklung von wesentlicher Bedeutung. ERKENNTNISGEWINN DURCH FEM-BERECHNUNG Die Bauteilanalyse mittels FEM-Berechnung (Finite-Elemente-Methode) ist bei der Bestimmung des mechanischen Verhaltens in der Produktentwicklung von wesentlicher Bedeutung. Schwerpunkt unseres Leistungsspektrums ist deshalb die Durchführung einer FEM-Berechnung im Bereich der Strukturmechanik. Unser Leistungsspektrum umfasst hierbei eine Vielzahl von Berechnungsdisziplinen, angefangen von thermischen, statischen und dynamischen Berechnungen bis hin zur Berechnung hochdynamischer oder bruchmechanischer Vorgänge. Für die Bauteilanalyse setzen wir folgende Programme zur FEM-Berechnung ein: Ansys LS-Dyna RSTAB Die Ergebnisse der Bauteilanalyse sind die Grundlage für einen anschließenden Festigkeitsnachweis, bruchmechanische Nachweise oder die Bewertung von Verformungszuständen. Ihr Produkt muss Anforderungen bezüglich einzuhaltender Verformungen erfüllen, oder Sie möchten Ihr Produkt aus ökonomischen oder ökologischen Gründen optimieren? Sie zeigen uns Ihr Produkt – wir zeigen Ihnen Optimierungspotenziale.
Verfahrenstechnik

Verfahrenstechnik

Demister und Koaleszenzabscheider für die Umwelt Umweltschutz ist heute eine Selbstverständlichkeit. DHD Filterelemente helfen bei der Reinhaltung von Luft und Wasser. Sie werden zur Reinigung von Industrieabgasen und Abwässern genutzt. Vorteile von DHD-Tropfenabscheidern Strömungsgeschwindigkeit 1-6 m/s Tropfengröße 3 ? 20m Niedriger Druckverlust 1 ? 5 mbar Abscheidegrade bis 99,9 % Problemlose Reinigung Vielfältige Materialauswahl Lange Standzeiten
Bainitisches- /  Zwischenstufen-Verfahren

Bainitisches- / Zwischenstufen-Verfahren

Das Bainitisieren (korrekt als Zwischenstufenvergütungsverfahren bezeichnet) verbessert die Eigenschaften der Teile in puncto Federcharakteristik durch ein verfeinertes Gefüge, d.h. längere Einsatzdauer und stabilere Federkraft. Das Besondere bei diesem Verfahren ist die geringere Differenz zwischen der Ofen- und Anlasstemperatur. Somit bildet sich im Härtegut ein stark verfeinertes Gefüge und dieses bewirkt dann die Verbesserung der Federeigenschaft durch deutlich weniger Martensitanteile. Anwendung bei anspruchsvollen und federkraftstabilen Artikeln z.B. Teile für Steuerungen bei hoher Beanspruchungsdauer. Vorteile des Bainitisierens: • deutlich geringerer Härteverzug der Teile • längere Lebensdauer bei hohen Werten • glatte Oberfläche (keine Oxydationsreste) Das bainitische Härteverfahren wird bei OTRA laufend optimiert um den Bedürfnissen der Kunden stets besser entsprechen zu können.
Membranen für Druckausgleichs­­elemente (DAE)

Membranen für Druckausgleichs­­elemente (DAE)

Effiziente Be- und Entlüftung von Fahrzeugkomponenten Eine zuverlässige Funktion über einen langen Lebenszyklus ist das, was man sich von jedem Bauteil, unabhängig von dessen Einsatzgebiet, wünscht. Dem entgegen steht eine Vielzahl von Faktoren wie z.B. Verschmutzungen, Leckagen, defekte Komponenten oder die Veränderung des Innendrucks. Durch Temperaturschwankungen oder Höhenunterschiede hervorgerufene Druckveränderungen im Gehäuse können zur Verformung dessen führen oder die Dichtungen beschädigen und Undichtigkeiten bedingen. Unsere Membranen für Druckausgleichselemente bestehen aus expandiertem PTFE (Polytetrafluorethylen), dass durch seine einzigartige offenporige Struktur für den nötigen Druckausgleich der Gehäuse sorgt und zugleich das Eindringen von Schmutz, Staub, Wasser und Flüssigkeiten verhindert. So können Sie eine einwandfreie Funktion ihrer Bauteile über einen langen Lebenszyklus sicherstellen. Unser Know How Als Membranhersteller begleiten wir Sie bereits im Entwicklungsstadium Ihres Druckausgleichselementes. Sei es bei der Wahl der passenden Membrane in Bezug auf Luftdurchlässigkeit, Wassereintrittsdruck oder Trägermaterial bis hin zur Berechnung der für einen konstanten Druckausgleich benötigten Membranfläche. Gemeinsam finden wir die richtige Lösung für Ihren speziellen Anwendungsfall. Vorteile von e-PTFE-Membranen für DAEs • Ermöglichen Druckausgleich • Barrierefunktion gegenüber Umwelteinflüssen • Chemisch Inert • Hohe Luftdurchlässigkeit • Hoher Wassereintrittsdruck • Hydrophob • Oleophob ausrüstbar Beispielanwendung: Temperaturwechsel in Elektronikbauteilen Ein konkreter Anwendungsfall für eine erforderliche Be- und Entlüftung im Automobilbau, stellt die Erwärmung von Elektronikkomponenten während des Fahrzeugbetriebs dar. So zeigt nebenstehendes Diagramm beispielhaft einen Temperaturwechsel von -40 °C auf + 80 °C und den im Gehäuse entstehenden Druckanstieg bzw. Druckverlauf. Durch den Einsatz eines Druckausgleichselementes mit der erforderlichen Luftdurchlässigkeit und Membranfläche, wird ein für das Bauteil unkritischer Druckanstieg und anschließender, vollständiger Druckausgleich erreicht. Das Gehäuse nimmt durch den Temperaturanstieg keinen Schaden und ist zudem vor schädlichen Umwelteinflüssen geschützt. Sie haben Fragen zu unseren Membranen für Druckausgleichselemente, einen konkreten Anwendungsfall oder benötigen technische Unterstützung? Melden Sie sich bei uns.
Prototyping - 3D Print / Additive Fertigung - Fused Deposition Modeling (FDM auch FFF genannt)

Prototyping - 3D Print / Additive Fertigung - Fused Deposition Modeling (FDM auch FFF genannt)

Das Bauteil entsteht durch schichtweises Auftragen des aufgeschmolzenen Kunststoffdrahtes (verschiedene Originalmaterialen), welches durch einen Extruder aufgetragen wird. Diese Bauteile wiederum sind stabil, nahezu verzugsfrei, dauerhaft masshaltig ohne zu schrumpfen und absorbieren nur gering Luftfeuchtigkeit und bleiben bei sich ändernden Umweltbedingungen formstabil. Die gefertigten Bauteile werden mit feinen Schichtlinien roh belassen oder auf Wunsch gefinished (z. B. lackiert). Nachteilig ist eine geringere Detailsauflösung die sich aus dem Extrudieren der Kunststofflayer ergibt (Schichtstärken 0.330, 0.254, 0.178, 0.127mm). Für glatte Sichtteile ist das Verfahren daher weniger gut geeignet. Die Festigkeit der Teile ist Z Richtung geringer und daher werden die Teile zur Krafteinwirkungsrichtung ausgerichtet. Stratasys | Fortus | Fortus 900 MC| Fortus 360 MC | F 370 |
Oberflächenrauhigkeitsmessung

Oberflächenrauhigkeitsmessung

Durchführung der Prüfung und Erstellung von Berichten nach Kundenanforderungen
KOMPETENZEN HARD- und SOFTWAREENTWICKLUNG

KOMPETENZEN HARD- und SOFTWAREENTWICKLUNG

◦ Analog-und Digital-Schaltungsentwicklung ◦ Schaltreglerdesign bis 48V DC ◦ Mikrocontroller und FPGA Design ◦ Leiterplattendesign ◦ mechanische 3D-Konstruktion rund um die Leiterplatte mit SolidWorks ◦ EMV-gerechtes Design ◦ individuelle LabView-Lösungen ◦ Requirements Engineering ◦ entwicklungsbegleitende EMV-Prüfung in akkreditierten Laboren ◦ Bedienfoliendesign
Leitfäden für Blechkonstruktionen

Leitfäden für Blechkonstruktionen

Dieser Leitfaden soll Ihnen helfen, Ihre Blechteile für die Fertigung vorzubereiten. 1. Warum ist die Herstellbarkeit wichtig? Die fertigungsgerechte Konstruktion, auch DFM genannt, stellt sicher, dass die von Ihnen entworfenen Komponenten hergestellt werden können, was für das Outsourcing entscheidend ist. Es trägt dazu bei, die Überarbeitungen und Durchlaufzeiten zu reduzieren. 2. Übersicht Materialauswahl - Edelstahl - Stahl (unbehandelt) - Verzinkter Stahl - Aluminium - Messing - Kupfer Veredelungen Wir bieten die folgenden Veredelungen für Ihre Blechteile an: - Schweißen von Blechteilen mit MIG und TIG - Nieten - Pulverbeschichtung - Galvanisieren Spurweite Die Spurweite gibt die Dicke des Blechs an, je nach Material.Zum Beispiel entspricht Spurweite 18 bei Edelstahl einer Dicke von 1,270 mm, während Spurweite 18 bei Aluminium 1,024 mm entspricht. Biegung Eine Biegung ist die Verformung eines Blechs um eine Achse. Sie wird mit Hilfe eines Stempels und einer Matrize hergestellt.
Elektrofilter - Entstaubungsanlagen

Elektrofilter - Entstaubungsanlagen

Unsere ETM-Elektrofilter werden als Platten-Trocken-Elektrofilter konzipiert. Anwendung finden Elektrofilter häufig als Heißgasentstaubungen, da sie in besonderem Maße beständig gegen Hitze sind.
Nuklear­technologien

Nuklear­technologien

um Hochtemperatur-Reaktoren, Prozess-Anlagen und Energie-Prozesse Wir liefern das Know-how und die Technologien zur Erzeugung und Nutzung von nuklearer, thermischer und elektrischer Energie mittels inhärent sicherer (negativer Temperatur-Koeffizient) Kugelhaufen-Reaktoren unter Beachtung aller relevanten Regeln, Verträge, Genehmigungen sowie inter­nationaler Ab­kommen. Die HTGCR-Reaktoren liefern thermische und elektrische Energie für Strom-Versorgung, industrielle Prozesse (z. B. Metallurgie, Chemie-Synthesen) und für Hoch­temperatur-Prozesse wie Hoch­temperatur-Elektrolyse. (HTGCR High Temperature Gas-Cooled Reactor). Vorteil der sicheren Nuklear­technologie ist die CO²-freie Energie-Erzeugung für die gesamte industrielle Produktions- und Wert­schöpfungs­kette und für die End­verbraucher. Das Technologie-, Verfahrens­technik- und Reaktor-Know-how steht zur Ver­fügung für Hydro-Metallurgie, Elektro-Metallurgie, Extraktions- und Se­pa­ra­ti­onsverfahren bei Uran-Erz-Ver­arbeitung, Uran-Gewinnung und Auf­arbeitung radio­aktiv belasteter Ab­wässer. Ein weiterer Technologie-Schwer­punkt ist die Wieder­auf­arbeitung ab­ge­brannter Brenn­elemente und die Ge­winnung der ent­haltenen Actiniden. Das Engineering und die Verfahrens­technik liefern Spezial-Apparate für die Zer­kleinerung, die Auf­lösung und die Solvent-Extraktion (Zentrifugal-Extraktoren). Das Kern­technik-Know-how ist die Basis des Engineerings von Anlagen für die sichere Ver­ar­beitung von Roh­stoffen und die Ent­sorgung radio­aktiver Rest­stoffe (Auf­arbeitung, Inertisierung, Neutralisierung, Vitrifikation). Das Kerntechnik- und Material-Know-how be­inhaltet Technologien für den kontrollierten Rück­bau von Nuklear-Anlagen (z. B. Reaktoren, Versuchs­reaktoren und U-Boot-Reaktoren). Das vorhandene Keramik- und Komposit-Know-how unterstützt die Herstellung von abrieb-resistenten Keramik-Komposit-Kugeln als Brenn­elemente. Wichtiger Aspekt ist die thermo­dynamisch und effiziente Energie-Gewinnung mit­hilfe von Helium-Turbinen, gas­förmigem Helium als Wärme­träger und scCO²-Anlagen (super­kritisches CO2²-System) für die thermisch-zu-elektrische Energie-Um­wandlung. Breite Anwendbarkeit im Energie-, Antriebs- und Nuklear­technik-Bereich ergibt sich für temperatur- und korrosions­resistente Legierungen und Beschichtungen für Gas-Turbinen (Tantal, Zirkon-Boride, Zirkon-Carbide). Ein Schwerpunkt ist das Engineering von lang­lebigen Robotern für Extrem-Umgebungen (Hoch­temperatur, Vakuum, Elektro­magnetismus, Strahlung und Hoch­druck) zum Einsatz bei Havarien, Rückbau, Exploration und Produktion. Das hydro-metallurgische und Nuklear-Know-how findet Einsatz bei optimierter Ver­arbeitung radio­aktiv (z. B. mit Thorium und Uran) belasteter Wertstoff-Mineralien (z. B. Seltener Erden (Rare Earth Elements)). Dabei ist der korrosive und toxische Charakter (z. B. Fluoride) bei industrieller Ver­arbeitung und Rest-Schlamm/Abraum-Sicherung und -Sanierung besonders zu be­rück­sichtigen. Ein katalytischer Spezial-Reaktor ermöglicht die De­kon­ta­mi­na­t­ion von tritium­haltigem Wasser und Ab­trennung von Tritium für die He³-Gewinnung.
FEM Simulation Strukturmechanik

FEM Simulation Strukturmechanik

Nichtlineare und lineare Simulationen, Festigkeitsnachweise Wir bieten statisch lineare und nichtlineare Analysen. Von Einzelteilen bis zur komplexen Baugruppe mit nichtlinearen Kontakten, Materialverhalten und großer Verformung. - Linear statische Simulation - Nichtlineare Simulation - Nachweis der Stabilität - Festigkeitsnachweise Statik und Ermüdung - Schweißnahtberechnung
Abb. 4: Schematischer Verlauf des Schichtwachstums beim Nitrieren/ Nitrocarburieren von Reineisen

Abb. 4: Schematischer Verlauf des Schichtwachstums beim Nitrieren/ Nitrocarburieren von Reineisen

Im weiteren Verlauf des Nitriervorgangs nimmt die Dicke der Nitrierschicht zu, wobei die Wachstumsgeschwindigkeit mit zunehmender Dauer durch die immer stärkere Diffusionsbehinderung sinkt [5,6,7]. Zusätzlich kann Kohlenstoff in die Verbindungsschicht eingebaut werden. Dieser wird dem Werkstoff aus dem Reaktionsmedium und dem Grundmaterial zugeführt. Man erhält Nitridschichten entsprechend dem Dreistoffsystem Fe-C-N (Abb. 5)
Abb. 4: Schematischer Verlauf des Schichtwachstums beim Nitrieren/ Nitrocarburieren von Reineisen

Abb. 4: Schematischer Verlauf des Schichtwachstums beim Nitrieren/ Nitrocarburieren von Reineisen

Im weiteren Verlauf des Nitriervorgangs nimmt die Dicke der Nitrierschicht zu, wobei die Wachstumsgeschwindigkeit mit zunehmender Dauer durch die immer stärkere Diffusionsbehinderung sinkt [5,6,7]. Zusätzlich kann Kohlenstoff in die Verbindungsschicht eingebaut werden. Dieser wird dem Werkstoff aus dem Reaktionsmedium und dem Grundmaterial zugeführt. Man erhält Nitridschichten entsprechend dem Dreistoffsystem Fe-C-N (Abb. 5).
Abb. 4: Schematischer Verlauf des Schichtwachstums beim Nitrieren/ Nitrocarburieren von Reineisen

Abb. 4: Schematischer Verlauf des Schichtwachstums beim Nitrieren/ Nitrocarburieren von Reineisen

Im weiteren Verlauf des Nitriervorgangs nimmt die Dicke der Nitrierschicht zu, wobei die Wachstumsgeschwindigkeit mit zunehmender Dauer durch die immer stärkere Diffusionsbehinderung sinkt [5,6,7]. Zusätzlich kann Kohlenstoff in die Verbindungsschicht eingebaut werden. Dieser wird dem Werkstoff aus dem Reaktionsmedium und dem Grundmaterial zugeführt. Man erhält Nitridschichten entsprechend dem Dreistoffsystem Fe-C-N (Abb. 5)
Oberflächenfunktionalisierung

Oberflächenfunktionalisierung

Muster und Strukturen im Nanomaßstab Für die Strukturierung von Oberflächen auf chemischem Wege oder mit Partikeln hat unser Team Zugriff auf viele verschiedene Technologien. Eine Auswahl: Tauchbeschichten oder Tropfengießen mit Slurries, Spritzbeschichten und Ultraschall-Spritzbeschichten, Plasmaspritzen, chemische und elektrochemische Anwendungen etc.
Der Puffercontrol ist eine Temperaturanzeige für Pufferspeicher.

Der Puffercontrol ist eine Temperaturanzeige für Pufferspeicher.

Diese wurde entwickelt, um den Besitzern aller Arten von Holzheizungen, den Komfort zu bieten, den Energieinhalt ihres Pufferspeichers vom Wohnzimmer aus abzulesen. Dabei werden mehrere Fühler am Pufferspeicher platziert und an ein Sensormodul angeschlossen. Dieses überträgt die Temperaturen durch Kabelverbindung zum Anzeigemodul. Es sind verschiedene Anzeigearten möglich. Unter anderem auch die Anzeige der Temperaturen in 2 Pufferspeicher oder der gleichzeitigen Anzeige eines Puffers und des Holzkessels. In einer Weiterentwicklung wurden noch zwei potentialfreie Ausgangsrelais eingebaut. Mit diesen ist es möglich, über die Differenz-Regler-Funktion, Pumpen zu steuern oder Ventile zu schalten. Diese Weiterentwicklung läuft unter dem Namen „Puffercontrol plus”.
Hochwertiger Edelpudergrafit von THIELMANN GRAPHITE - Perfekte Mischung für vielfältige Anwendungen

Hochwertiger Edelpudergrafit von THIELMANN GRAPHITE - Perfekte Mischung für vielfältige Anwendungen

Willkommen bei THIELMANN GRAPHITE - Ihrem Spezialisten für hochwertigen Edelpudergrafit! Unsere Edelpudergraphite sind sorgfältig gemischte Kombinationen aus makrokristallinem Naturgrafit und synthetischem Graphit, um eine einzigartige Qualität zu gewährleisten. Eigenschaften: Unsere Edelpudergraphite bieten eine breite Palette von Eigenschaften, die sich innerhalb folgender Parameter bewegen: Kohlenstoffgehalt: Ca. 95% Feinheit: Von 5 µ bis 65 µ Vielseitige Anwendungen: Schmiermittel: Dank der feinen Partikel eignet sich unser Edelpudergrafit hervorragend als Schmiermittel in verschiedenen Industrieanwendungen. Leitfähigkeit: Mit einem Kohlenstoffgehalt von etwa 95% bietet unser Edelpudergrafit eine gute elektrische Leitfähigkeit. Chemische Beständigkeit: Die Mischung aus Naturgrafit und synthetischem Graphit verleiht unserem Edelpudergrafit eine ausgezeichnete chemische Beständigkeit. Vorteile: Hoher Kohlenstoffgehalt: Mit einem Kohlenstoffgehalt von ca. 95% bietet unser Edelpudergrafit eine optimale Leistung in verschiedenen Anwendungen. Feine Partikelgröße: Die Feinheit von 5 µ bis 65 µ ermöglicht eine gleichmäßige Verteilung und Anpassung an unterschiedliche Verarbeitungsanforderungen. Vielseitige Anwendungen: Unser Edelpudergrafit ist ideal für Schmiermittel, Elektrodenherstellung und weitere industrielle Anwendungen. Warum THIELMANN GRAPHITE wählen? Qualitätssicherheit: Mit zertifizierten Qualitätsstandards und über 40 Jahren Erfahrung bieten wir erstklassige Edelpudergraphite. Maßgeschneiderte Lösungen: Unsere Experten stehen Ihnen zur Verfügung, um individuelle Anforderungen und Lösungen zu besprechen. Kontinuierliche Innovation: Wir bleiben stets auf dem neuesten Stand der Technologie, um innovative Grafitprodukte anzubieten. Kontaktieren Sie uns: Entdecken Sie die Vorteile unseres Edelpudergraphits mit THIELMANN GRAPHITE. Kontaktieren Sie uns für weitere Informationen, individuelle Beratung und maßgeschneiderte Lösungen. Wir freuen uns darauf, Ihnen hochwertige Grafitprodukte bereitzustellen.
Tarife für die Wärmelieferung

Tarife für die Wärmelieferung

Leistungspreis Der Leistungspreis wird für die Bereitstellung der thermischen Energie verrechnet und richtet sich nach dem Ausmaß des Verrechnungsanschlusswertes je Abnehmeranlage. Messpreis Der Messpreis ist ein monatliches Entgelt für die von der Quellengesellschaft bereitgestellten Messeinrichtungen. Arbeitspreis Der Arbeitspreis wird für die an den Abnehmer gelieferte thermische Energie verrechnet. Nähere Details zu unseren Wärmetarifen können Sie unserem Tarifblatt entnehmen. Das aktuelle Tarifblatt öffnet sich mit einem Klick auf das Bild rechts.
Machbarkeitsprüfungen

Machbarkeitsprüfungen

Um ihr Schmiedeteil in höchster Qualität und mit Sicherheit herstellen zu können, nutzen wir FEM-Software um Machbarkeiten zu prüfen und die Materialflussparameter zu bestimmen.
Ausgleichs- und Thermoleitungen

Ausgleichs- und Thermoleitungen

Grundlagen Eine Temperaturmessung mit einem Thermoelement als Messwertgeber besteht im einfachsten Fall aus dem Thermoelement an der Messstelle, einer Vergleichsstelle mit bekannter/konstanter Temperatur und einem Spannungsmessgerät. Häufig ist es notwendig, die Vergleichsstelle in größerer Entfernung von der Messstelle zu platzieren. Um diese Entfernung zu überbrücken, werden Thermo- bzw. Ausgleichsleitungen verwendet, die die gleichen thermoelektrischen Eigenschaften wie das Thermoelement besitzen. Während die Thermoleitungen aus dem gleichen Material wie das zugehörige Thermoelement hergestellt sind, bestehen Ausgleichsleitungen aus Ersatzwerkstoffen, die nicht mit dem Thermoelement identisch sein müssen. Sie haben jedoch in dem für die Ausgleichsleitungen zulässigen Temperaturbereich die gleichen thermoelektrischen Eigenschaften wie das zugehörige Thermopaar. Ausgleichsleitungen werden mit dem Buchstaben "C" gekennzeichnet, der dem Kennbuchstaben des Thermopaares nachgestellt wird, z.B. "KC" als Bezeichnung für die Ausgleichsleitung des Thermoelements Typ "K". Farbkennzeichnung der Thermopaare Thermopaare Farbkennzeichnung nach Kenn- buchstabe Werkstoff IEC 584 DIN 43 710* ANSI MC 96.1 NiCr - Ni Fe - CuNi Fe - CuNi PtRh - Pt NiCrSi - NiSi Cu - CuNi Cu - CuNi Die Norm 43710 wurde 1994 zurückgezogen. Die Elementarten "L" und "U" sind somit nicht mehr genormt.
Sensorkennlinie Drucksensor/Kraftsensor

Sensorkennlinie Drucksensor/Kraftsensor

Das Diagramm zeigt die Relation zwischen der Belastung in % FS (Druck/Kraft) und der Ausgangskapazität Cx des Sensors.
Druckübersetzer NT

Druckübersetzer NT

Der Druckübersetzer NT verfügt über einen Zustell- und einen Krafthub mit einer Übersetzung von 1:17,5, 1:25, 1:39 oder 1:61. Anwendung: Ersatz eines kleinen Hydraulikaggregates. Prinzip vom Druckübersetzer NT Unser Druckübersetzer besitzt zwei Kolben, der eine Kolben ist für den Zustellhub bzw. für den Schnellhub beim Arbeitszylinder zuständig und arbeitet als Medium-Wandler. Das bedeutet der Eingangsluftdruck wird 1:1 in Hydraulikduck umgewandelt. Der zweite Kolben arbeitet als Übersetzerkolben, mit einem vorher festgelegten Übersetzungsverhältnis. Dieser ist für den Krafthub am Arbeitszylinder zuständig. Durch die eingebauten Bypass-Ventile im Druckübersetzer kann der Kolben für den Zustellhub jederzeit, bei abfallendem Arbeitsdruck, Öl zum Arbeitszylinder nachfördern. Diese Bauweise erlaubt es, dass der Krafthub jederzeit wiederholt werden kann, ohne den Druckübersetzer und Arbeitszylinder in Grundstellung zu fahren. Der neue Druckübersetzer NT bietet folgende Vorteile: • Kostenersparnis durch Einsparung eines Hydraulikaggregates: Mit unserem neu entwickelten Druckübersetzer lassen sich herkömmliche Hydraulikzylinder mit Eil- und Krafthub betreiben. Durch den Einsatz von zwei Druckübersetzern können sogar doppeltwirkende Hydraulikzylinder im Eil- und Krafthub betrieben werden. • Einfache Ansteuerung: Diese erfolgt durch ein 3/2-Wegeventil für den Zustellhub und ein 5/2-Wegeventil für den Krafthub. • Beliebige Wiederholung des Krafthubes: Mit Hilfe einer Steuerung kann der Krafthub über das 5/2-Wegeventil beliebig oft wiederholt werden. Hierzu muss das 3/2-Wegeventil geschaltet bleiben. • Eingebaute Bypass-Ventile verhindern eine Vakuumbildung beim Stanzen und ermöglichen eine beliebige Wiederholung des Krafthubes. • Der Übersetzerzylinder ist mit Signalgabe ausgestattet, welche zur Überwachung, bzw. zur Wiederholung des Krafthubes dient. • Ein geschlossenes Öl-System, sowie eine absolute Öl-/ Lufttrennung gewährleisten ein Höchstmaß an Betriebssicherheit. • Durch die Verwendung von Dichtungsaufnahmen entstehen geringe Lagerhaltungskosten, für die verschiedenen Übersetzungsverhältnisse, da alle wesentlichen Teile identisch sind. Auch ein nachträglicher Umbau auf ein anderes Übersetzungsverhältnis ist möglich • Das Ölvolumen für den Zustell- und Krafthub, sowie die benötigte Ölreserve für einen sicheren Betrieb des Arbeitszylinders, kann vom Anwender gegen Aufpreis festgelegt werden. Eine Liste über die Standard-Typen folgt. • Die Auslieferung erfolgt im gefüllten Zustand (falls nicht gewünscht, bitte bei der Bestellung angeben)
Hochgeschwindigkeitsflammspritzen (HVOF)

Hochgeschwindigkeitsflammspritzen (HVOF)

Eigenschaften: - Verbrennung von entzündlichen Gasen - Beschleunigung der Gase in einer Düse (Hochgeschwindigkeitsflammspritzen HVOF = High Velocity Oxygen Fuel) - Die Pulverpartikel werden auf sehr hohe Geschwindigkeiten beschleunigt (bis zu 800 m/s) - Das Pulver wird dabei teilweise in der Flamme aufgeschmolzen Vorteile: - Dichte Schichten - Hohe Schichtqualität - Sehr gute Haftung der Schichten auf dem Grundmaterial - Prozesssicher durchführbar Anwendung: - Elektrische und thermische Isolationsschichten - Korrosionsschutz - Allgemeiner Verschleißschutz
Gasheizung

Gasheizung

Gas-Brennwertkessel Höchste Energieeffizienz und niedrige Emissionen dank hochentwickelter Brennertechnik. Gas-Brennwertkessel Hightech schont die Umwelt Damit Heizwärme nicht auf Kosten der Umwelt oder im Übermass zu Lasten des Budgets erzeugt wird, werden Heiztechnologien laufend verbessert. Heutige Heizungssysteme sind kleiner und intelligenter, vor allem aber sehr viel effizienter geworden. Raffinierte Steuer- und Regelsysteme denken mit und erreichen, dass das Heizaggregat stets im optimalen Wirkungsbereich arbeitet. Gas-Brennwertkessel nutzen die in den Abgasen gespeicherte Energie. Damit steigt der Wirkungsgrad erheblich und macht aus diesem System eine besonders umweltfreundliche Heizanlage mit maximaler Funktionssicherheit und ausgezeichnetem Komfort. Zudem arbeiten unsere Gas-Brennwertsysteme modulierend: Die Leistung passt sich flexibel dem effektiven Wärmebedarf an, was eine weitere markante Reduktion des Energieverbrauchs und damit auch der Umweltbelastung bewirkt.
Sauna Arten

Sauna Arten

Im Wesentlichen unterscheidet man zwischen zwei Saunaarten. Die klassische Trockensauna, umgangssprachlich auch finnische Sauna genannt, sorgt für eine trockene Wärme mit Temperaturen über 75°C und geringer Luftfeuchtigkeit. Mit niedrigeren Temperaturen von 45°C bis 60°C und einer Luftfeuchtigkeit von 50 bis 60%, bietet die Feuchtsauna, auch Dampfsauna genannt, eine Alternative zur klassischen Sauna. Die Dampfsauna ist dabei nicht mit dem Dampfbad zu verwechseln. Kombiniert mit Licht, Kräutern oder Düften ergeben sich viele Unterformen der beiden Saunaarten, die dann z.B. Bio-Sauna oder Kräutersauna genannt werden. Grundsätzlich können alle Saunaarten in derselben Kabine verwirklicht werden, wenn die entsprechende Technik eingeplant wird.
Fatigue und Betriebsfestigkeit FEM

Fatigue und Betriebsfestigkeit FEM

Wir berechnen die Betriebsfestigkeit von Bauteilen aus Metall oder Faserverbund.